
A Spatial Target Function for Metropolis Photon Tracing -
Supplemental Document

1. DETAILS ON OUR FOUR-CHAIN REPLICA
EXCHANGE DESIGN

In this section we provide a detailed algorithmic description of our
four-chain replica exchange design for sampling from our target
function. The notation used in this document is summarized in Ta-
ble I. It corresponds to the main paper but we omit the iteration in-
dex i, since here we only consider a single algorithm iteration. The
algorithmic steps are summarized and commented in Algorithms 1
to 5, while the main text provides further justification and details of
some of these steps.

Each of the four chains uses a different target function (see Ta-
ble II) and therefore distributes the paths in a different manner.
Combination of all four chains via replica exchange yields a more
effective algorithm than using a single chain with a complex target
function. The chains with simpler target functions (uniform, visi-
bility) help to efficiently explore the entire state space, while the
remaining two chains explore local features of their complex target
functions.

Algorithm 1 gives an overview of our four-chain sampling al-
gorithm. This corresponds to the implementation of the procedure
RUNMETROPOLISPATHSAMPLING from Algorithm 1 in the paper.
Note that the second and the third chains generate two times fewer
samples (paths) than the other chains. We found this approach to be

Lc c-th chain
X

(j)
Lc

j-th state of the c-th chain (corresponds to a single light
sub-path)

Y proposed state (light sub-path)
T̂Lc target function of the c-th chain
bLc normalization constant of T̂Lc , bLc =

∫
T̂Lc (ū)dū

b
(p)
Lc

normalization constant of T̂Lc from a previous iteration
updateL1

variable used for alternating the updates of chains L1 and
L2

accumLc sample accumulator used for the computation of the nor-
malization bLc

M number of cycles of the main sampling loop in each iter-
ation

samplesLc number of samples generated by the c-th chain in a single
iteration (M for L0 and L3; M/2 for L1 and L2)

Gk measurement point
P [Gk] RGB value of the pixel associated with a measurement

point Gk

U the primary-sample space
ū a variable from U
V (X) a visibility function that returns 1 for paths that con-

tribute to at least one measurement point and 0 to non-
contributing paths

S(X) an inverse size of a measurement point kernel (the right
factor in Eq. 11 in the paper)

D(X) an inverse of a density Duni (the left factor in Eq. 11 in
the paper)

Table I. : Notation used throughout this supplemental document.

L0 (Uniform): T̂L0
(X) = 1

L1 (Visibility): T̂L1 (X) = V (X)

L2 (Inverse kernel size): T̂L2
(X) = V (X)S(X)

L3 (Our target function): T̂L3
(X) = V (X)S(X)D(X)

Table II. : The four different chains and their target functions.

more efficient than giving each chain the same number of samples.
The algorithm uses several non-trivial procedures that are described
below in separate pseudo-codes.

The procedure DOMETROPOLISUPDATE (see Algorithm 2)
is used for mutations of a single chain according to the
Metropolis-Hastings algorithm [Hastings 1970], while DOREPLI-
CAEXCHANGE (see Algorithm 3) handles replica exchange be-
tween two neighboring chains. For each chain, we use an indepen-
dent adaptive MCMC process to automatically tune the mutation
size [Hachisuka and Jensen 2011].

Please note that the first two chains (uniform, visibility) have
such simple target functions that their mutations and replica ex-
change between them can be easily simplified. We omit this sim-
plification in the pseudocode presented here but we do use it in the
implementation itself. Please refer to the work of Hachisuka and
Jensen [2011] for details.

The procedure UPDATENORMALIZATION (see Algorithm 4) es-
timates the normalization constant bLc of one chain (Lc) using the
samples from the previous chain (Lc−1). The procedure actually

Algorithm 1 Pseudo-code of the 4-chain algorithm.

1: for j = 1 . . .M do
2: // Advance the uniform (L0) chain
3: X

(j)
L0

= DOMETROPOLISUPDATE(L0 : X
(j−1)
L0

)
4: // Update the normalization of the visibility (L1) chain
5: UPDATENORMALIZATION(bL1

: X
(j)
L0

)
6: // Perform replica exchange between L0 and L1

7: DOREPLICAEXCHANGE(L0 : X
(j)
L0

, L1 : X
(j−1)
L1

)
8: // Alternate the update of chains L1 and L2

9: if updateL1
== true then

10: c = 1,X
(j)
L2

= X
(j−1)
L2

11: else
12: c = 2,X

(j)
L1

= X
(j−1)
L1

13: end if
14: updateL1

= ¬updateL1
// Alternate

15: // Advance the selected Lc chain
16: X

(j)
Lc

= DOMETROPOLISUPDATE(Lc : X
(j−1)
Lc

)
17: // Update the normalization of the next (Lc+1) chain
18: UPDATENORMALIZATION(bLc+1

: X
(j)
Lc

)
19: // Perform replica exchange between Lc and Lc+1

20: DOREPLICAEXCHANGE(Lc : X
(j)
Lc

, Lc+1 : X
(j−1)
Lc+1

)
21: // Finally, advance the L3 chain (our TF)
22: X

(j)
L3

= DOMETROPOLISUPDATE(L3 : X
(j−1)
L3

)
23: end for

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



2 • A. Gruson et al.

Algorithm 2 DOMETROPOLISUPDATE pseudo-code.

1: function DOMETROPOLISUPDATE(Lc : X)
2: // Generate a proposal sample
3: Y = MUTATE(Lc : X)
4: // Calculate acceptance probability
5: a = min{1, T̂Lc (Y )

T̂Lc (X)
}

6: // Splat the expected value of the current and proposed state
7: SPLAT(Lc : Y, a)
8: SPLAT(Lc : X, 1− a)
9: // Accept/Reject the proposal

10: if a >RANDOM() then
11: return Y
12: else
13: return X
14: end if
15: end function

Algorithm 3 DOREPLICAEXCHANGE pseudo-code.

1: function DOREPLICAEXCHANGE(Lc : XLc , Lc+1 : XLc+1
)

2: // Compute the swap probability for chains Lc and Lc+1

3: r = min{1,
T̂Lc (XLc+1

)

T̂Lc (XLc )

T̂Lc+1
(XLc )

T̂Lc+1
(XLc+1

)
}

4: // Accept/reject the swap
5: if r >RANDOM() then
6: SWAPSTATES(XLc ,XLc+1

)
7: end if
8: end function

Algorithm 4 UPDATENORMALIZATION pseudo-code.

1: function UPDATENORMALIZATION(bLc+1
: XLc )

2: // Accumulate the current sample

3: accumLc+1
+=

T̂Lc+1
(XLc )

T̂Lc (XLc )

4: // Compute the updated normalization
5: bLc+1

= bLc

accumLc+1

samplesLc

6: end function

implements a Monte Carlo estimation of the following formula

bLc = bLc−1

∫
U

T̂Lc(ū)

T̂Lc−1(ū)
dū. (1)

Note that the formula requires bLc−1 (the normalization of the pre-
vious chain) to be computed beforehand. This leads to a recursive
computation starting with bL0

= 1.
Finally, the procedure SPLAT (see Algorithm 5) is responsible for

evaluating the contribution of the photons from one sample (each
sample corresponds to a single light path) to the nearest measure-
ment points. The accumulated pixel value P [Gk] must be normal-
ized after each iteration, which is achieved by multiplying it with

bLc

samplesLc

. (2)

Multiple importance sampling (MIS) between the chains is also
evaluated in SPLAT. The MIS weight calculation requires to eval-
uate the pdf of all sampled paths for the four sampling techniques
corresponding to the four chains. These pdfs are given by the re-
spective target functions divided by their normalization constants,
which themselves are only determined at the very end of the iter-

Algorithm 5 SPLAT pseudo-code.

1: function SPLAT(Lc : XLc , weight)
2: // Find measurement points around the photons of XLc

3: G = FINDMEASUREMENTPOINTS(XLc )
4: // Compute MIS weight of the sample

5: weightMIS =

samplesLc

T̂Lc (XLc )

b
(p)
Lc

2

∑3
i=0

samplesLi

T̂Li
(XLc )

b
(p)
Li

2

6: for each measurement point Gk ∈ G do
7: // Compute the radiance from a photon of XLc

8: // to a measurement point Gk

9: radiance = GETRADIANCE(Gk,XLc )
10: // Splat the value to a pixel associated with Gk

11: P [Gk]+= (radiance)(weightMIS) weight

T̂Lc (XLc )

12: end for
13: end function

ation. For this reason, we take an approximation in calculating the
MIS weights, and use the normalization constants (b(p)Lc

) from the
previous iteration. Note that these approximate MIS weights do not
introduce any additional bias because they still sum up to one.

REFERENCES

HACHISUKA, T. AND JENSEN, H. W. 2011. Robust adaptive photon trac-
ing using photon path visibility. ACM Trans. Graph. 30, 5 (Oct.).

HASTINGS, W. K. 1970. Monte carlo sampling methods using markov
chains and their applications. Biometrika 57, 1, pp. 97–109.

KITAOKA, S., KITAMURA, Y., AND KISHINO, F. 2009. Replica exchange
light transport. Computer Graphics Forum 28, 8, 2330–2342.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.


	Details on our four-chain replica exchange design

