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1. DETAILS ON OUR FOUR-CHAIN REPLICA
EXCHANGE DESIGN

In this section we provide a detailed algorithmic description of our
four-chain replica exchange design for sampling from our target
function. The notation used in this document is summarized in Ta-
ble I. It corresponds to the main paper but we omit the iteration in-
dex i, since here we only consider a single algorithm iteration. The
algorithmic steps are summarized and commented in Algorithms 1
to 5, while the main text provides further justification and details of
some of these steps.

Each of the four chains uses a different target function (see Ta-
ble II) and therefore distributes the paths in a different manner.
Combination of all four chains via replica exchange yields a more
effective algorithm than using a single chain with a complex target
function. The chains with simpler target functions (uniform, visi-
bility) help to efficiently explore the entire state space, while the
remaining two chains explore local features of their complex target
functions.

Algorithm 1 gives an overview of our four-chain sampling al-
gorithm. This corresponds to the implementation of the procedure
RUNMETROPOLISPATHSAMPLING from Algorithm 1 in the paper.
Note that the second and the third chains generate two times fewer
samples (paths) than the other chains. We found this approach to be

Lc c-th chain
X

(j)
Lc

j-th state of the c-th chain (corresponds to a single light
sub-path)

Y proposed state (light sub-path)
T̂Lc target function of the c-th chain
bLc normalization constant of T̂Lc , bLc =

∫
T̂Lc (ū)dū

b
(p)
Lc

normalization constant of T̂Lc from a previous iteration
updateL1

variable used for alternating the updates of chains L1 and
L2

accumLc sample accumulator used for the computation of the nor-
malization bLc

M number of cycles of the main sampling loop in each iter-
ation

samplesLc number of samples generated by the c-th chain in a single
iteration (M for L0 and L3; M/2 for L1 and L2)

Gk measurement point
P [Gk] RGB value of the pixel associated with a measurement

point Gk

U the primary-sample space
ū a variable from U
V (X) a visibility function that returns 1 for paths that con-

tribute to at least one measurement point and 0 to non-
contributing paths

S(X) an inverse size of a measurement point kernel (the right
factor in Eq. 11 in the paper)

D(X) an inverse of a density Duni (the left factor in Eq. 11 in
the paper)

Table I. : Notation used throughout this supplemental document.

L0 (Uniform): T̂L0
(X) = 1

L1 (Visibility): T̂L1 (X) = V (X)

L2 (Inverse kernel size): T̂L2
(X) = V (X)S(X)

L3 (Our target function): T̂L3
(X) = V (X)S(X)D(X)

Table II. : The four different chains and their target functions.

more efficient than giving each chain the same number of samples.
The algorithm uses several non-trivial procedures that are described
below in separate pseudo-codes.

The procedure DOMETROPOLISUPDATE (see Algorithm 2)
is used for mutations of a single chain according to the
Metropolis-Hastings algorithm [Hastings 1970], while DOREPLI-
CAEXCHANGE (see Algorithm 3) handles replica exchange be-
tween two neighboring chains. For each chain, we use an indepen-
dent adaptive MCMC process to automatically tune the mutation
size [Hachisuka and Jensen 2011].

Please note that the first two chains (uniform, visibility) have
such simple target functions that their mutations and replica ex-
change between them can be easily simplified. We omit this sim-
plification in the pseudocode presented here but we do use it in the
implementation itself. Please refer to the work of Hachisuka and
Jensen [2011] for details.

The procedure UPDATENORMALIZATION (see Algorithm 4) es-
timates the normalization constant bLc of one chain (Lc) using the
samples from the previous chain (Lc−1). The procedure actually

Algorithm 1 Pseudo-code of the 4-chain algorithm.

1: for j = 1 . . .M do
2: // Advance the uniform (L0) chain
3: X

(j)
L0

= DOMETROPOLISUPDATE(L0 : X
(j−1)
L0

)
4: // Update the normalization of the visibility (L1) chain
5: UPDATENORMALIZATION(bL1

: X
(j)
L0

)
6: // Perform replica exchange between L0 and L1

7: DOREPLICAEXCHANGE(L0 : X
(j)
L0

, L1 : X
(j−1)
L1

)
8: // Alternate the update of chains L1 and L2

9: if updateL1
== true then

10: c = 1,X
(j)
L2

= X
(j−1)
L2

11: else
12: c = 2,X

(j)
L1

= X
(j−1)
L1

13: end if
14: updateL1

= ¬updateL1
// Alternate

15: // Advance the selected Lc chain
16: X

(j)
Lc

= DOMETROPOLISUPDATE(Lc : X
(j−1)
Lc

)
17: // Update the normalization of the next (Lc+1) chain
18: UPDATENORMALIZATION(bLc+1

: X
(j)
Lc

)
19: // Perform replica exchange between Lc and Lc+1

20: DOREPLICAEXCHANGE(Lc : X
(j)
Lc

, Lc+1 : X
(j−1)
Lc+1

)
21: // Finally, advance the L3 chain (our TF)
22: X

(j)
L3

= DOMETROPOLISUPDATE(L3 : X
(j−1)
L3

)
23: end for
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Algorithm 2 DOMETROPOLISUPDATE pseudo-code.

1: function DOMETROPOLISUPDATE(Lc : X)
2: // Generate a proposal sample
3: Y = MUTATE(Lc : X)
4: // Calculate acceptance probability
5: a = min{1, T̂Lc (Y )

T̂Lc (X)
}

6: // Splat the expected value of the current and proposed state
7: SPLAT(Lc : Y, a)
8: SPLAT(Lc : X, 1− a)
9: // Accept/Reject the proposal

10: if a >RANDOM() then
11: return Y
12: else
13: return X
14: end if
15: end function

Algorithm 3 DOREPLICAEXCHANGE pseudo-code.

1: function DOREPLICAEXCHANGE(Lc : XLc , Lc+1 : XLc+1
)

2: // Compute the swap probability for chains Lc and Lc+1

3: r = min{1,
T̂Lc (XLc+1

)

T̂Lc (XLc )

T̂Lc+1
(XLc )

T̂Lc+1
(XLc+1

)
}

4: // Accept/reject the swap
5: if r >RANDOM() then
6: SWAPSTATES(XLc ,XLc+1

)
7: end if
8: end function

Algorithm 4 UPDATENORMALIZATION pseudo-code.

1: function UPDATENORMALIZATION(bLc+1
: XLc )

2: // Accumulate the current sample

3: accumLc+1
+=

T̂Lc+1
(XLc )

T̂Lc (XLc )

4: // Compute the updated normalization
5: bLc+1

= bLc

accumLc+1

samplesLc

6: end function

implements a Monte Carlo estimation of the following formula

bLc = bLc−1

∫
U

T̂Lc(ū)

T̂Lc−1(ū)
dū. (1)

Note that the formula requires bLc−1 (the normalization of the pre-
vious chain) to be computed beforehand. This leads to a recursive
computation starting with bL0

= 1.
Finally, the procedure SPLAT (see Algorithm 5) is responsible for

evaluating the contribution of the photons from one sample (each
sample corresponds to a single light path) to the nearest measure-
ment points. The accumulated pixel value P [Gk] must be normal-
ized after each iteration, which is achieved by multiplying it with

bLc

samplesLc

. (2)

Multiple importance sampling (MIS) between the chains is also
evaluated in SPLAT. The MIS weight calculation requires to eval-
uate the pdf of all sampled paths for the four sampling techniques
corresponding to the four chains. These pdfs are given by the re-
spective target functions divided by their normalization constants,
which themselves are only determined at the very end of the iter-

Algorithm 5 SPLAT pseudo-code.

1: function SPLAT(Lc : XLc , weight)
2: // Find measurement points around the photons of XLc

3: G = FINDMEASUREMENTPOINTS(XLc )
4: // Compute MIS weight of the sample

5: weightMIS =

samplesLc

T̂Lc (XLc )

b
(p)
Lc

2

∑3
i=0

samplesLi

T̂Li
(XLc )

b
(p)
Li

2

6: for each measurement point Gk ∈ G do
7: // Compute the radiance from a photon of XLc

8: // to a measurement point Gk

9: radiance = GETRADIANCE(Gk,XLc )
10: // Splat the value to a pixel associated with Gk

11: P [Gk]+= (radiance)(weightMIS) weight

T̂Lc (XLc )

12: end for
13: end function

ation. For this reason, we take an approximation in calculating the
MIS weights, and use the normalization constants (b(p)Lc

) from the
previous iteration. Note that these approximate MIS weights do not
introduce any additional bias because they still sum up to one.
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